
Target Support Package™ 4
Reference Guide

For Use with Analog Devices™ Blackfin®

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Target Support Package™ Reference Guide

© COPYRIGHT 2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2009 Online only New for Version 4.0 (Release 2009b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

System Requirements

1

Block Reference

2
ADSP-BF537 EZ-KIT Lite (bf537ezkitlite) 2-2

CAN Message Handling Blocks (canmsglib) 2-3

Host Communication (hostcommlib) 2-4

Blocks — Alphabetical List

3

Index

iii

iv Contents

1

System Requirements

For detailed information about the software and hardware required to use
Target Support Package™ software, refer to the Target Support Package
system requirements areas on the MathWorks Web site:

• Requirements for Target Support Package:
www.mathworks.com/products/target-package/requirements.html

• Requirements for use with Analog Devices™Blackfin®:
www.mathworks.com/products/target-package/adi-adaptor/

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/adi-adaptor/

1 System Requirements

1-2

2

Block Reference

ADSP-BF537 EZ-KIT Lite
(bf537ezkitlite) (p. 2-2)

Blocks for ADSP-BF537 EZ-KIT Lite

CAN Message Handling Blocks
(canmsglib) (p. 2-3)

Blocks for TMS320VC5510 DSP
Starter Kit (DSK) (c5510dsk)

Host Communication (hostcommlib)
(p. 2-4)

Blocks for TMS320VC5510 DSP
Starter Kit (DSK) (c5510dsk)

2 Block Reference

ADSP-BF537 EZ-KIT Lite (bf537ezkitlite)

Blackfin537 bf537_adc Configure ADC to collect data from
analog jacks and output digital data

Blackfin537 bf537_dac Convert a stream of digital data to
an analog signal and send it to the
output jack

Blackfin537 bf537_uart_config Configure UART transceiver to
capture data from UART port

Blackfin537 bf537_uart_rx Receive data stream from UART port

Blackfin537 bf537_uart_tx Transmit data stream from UART
port

2-2

CAN Message Handling Blocks (canmsglib)

CAN Message Handling Blocks (canmsglib)

CAN Pack Pack individual signals into CAN
message

CAN Unpack Unpack individual signals from CAN
messages

2-3

2 Block Reference

Host Communication (hostcommlib)
Byte Pack Convert input signals to uint8

vector

Byte Reversal Reverse order of bytes in input word

Byte Unpack Unpack UDP uint8 input vector into
Simulink® data type values

UDP Receive Receive uint8 vector as UDP
message

UDP Send Send UDP message

2-4

3

Blocks — Alphabetical List

Blackfin537 bf537_adc

Purpose Configure ADC to collect data from analog jacks and output digital data

Library ADSP-BF537 EZ-KIT Lite

Description Configure AD1871 audio ADC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

Dialog
Box

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The

3-2

Blackfin537 bf537_adc

frame rate depends on the sample rate and frame size. The
sample rate of the ADI BF537 EZ-KIT Lite board is 48 kHz. If you
set Samples per frame to 64, the resulting frame rate is 750
frames per second (48000/64 = 750).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block
to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream
Interrupt, Task, or Triggered Task blocks.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_dac

3-3

Blackfin537 bf537_dac

Purpose Convert a stream of digital data to an analog signal and send it to the
output jack

Library ADSP-BF537 EZ-KIT Lite

Description Configure AD1854 audio DAC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

Dialog
Box

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

3-4

Blackfin537 bf537_dac

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_adc

3-5

Blackfin537 bf537_uart_config

Purpose Configure UART transceiver to capture data from UART port

Library ADSP-BF537 EZ-KIT Lite

Description Configure UART transceiver on ADI BF537 based board to capture
data stream from the UART port of BF537 board. Your model can only
contain one configuration block per UART port.

Dialog
Box

UART port
Select which UART port this block configures. UART0 uses
processor pins PF0 (UART0 transmit) and PF1 (UART0 receive).
UART1 uses processor pins PF2 (Push button SW13) and PF3

3-6

Blackfin537 bf537_uart_config

(Push button SW12). These pins have multiple GPIO functions
that depend on the configuration of the processor. For more
information, see the “Programmable Flags (PFs)” section of the
ADSP-BF537 EZ-KIT Lite® Evaluation System Manual.

Baud rate
Configure the rate at which the UART transfers bits per second.
The bits include the start bit, the data bits, the parity bit (if
enabled), and the stop bits. Configure both the sending and
receiving devices to the same baud rate.

Data bits
Set the number of data bits per data frame to 5, 6, 7, or 8. The
UART transmits the least significant bit sent first. Use the
default value, 8 bits, unless your system requires a lower value.
Configure both the sending and receiving devices to the same
data bit value.

Parity
Set type of parity checking to be none, even, or odd. When you set
Parity to none, the UART does not perform parity checking and
does not transmit a parity bit. When you set Parity to even, the
UART sets the parity bit to 1 to obtain an even number of ones in
the data word. When you set Parity to odd, the UART sets the
parity bit to 1 to obtain an odd number of ones in the data word.
Parity checking can detect errors of 1 bit only. An error in 2 bits
can cause the data to have a seemingly valid parity. Configure
both the sending and receiving devices to the same parity value.

Stop bits
Set the number of bits used to indicate the end of a byte. When you
set Stop bits to 1, the UART transmits 1 bit to signal the end of a
transmission. When you set Stop bits to 1.5, the UART extends
the length of time it transmits the 1-bit stop bit by half. Configure
both the sending and receiving devices to the same stop bit value.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

3-7

Blackfin537 bf537_uart_config

See Also Blackfin537 bf537_uart_rx, Blackfin537 bf537_uart_tx

3-8

Blackfin537 bf537_uart_rx

Purpose Receive data stream from UART port

Library ADSP-BF537 EZ-KIT Lite

Description Configure UART receiving on ADI BF537-based board to receive
data stream from the UART port on the board. This block outputs
[Nx1], where N indicates the data length in an array of uint8 values
representing the ASCII characters. Your model can only contain one
receive block per UART port.

Dialog
Box

3-9

Blackfin537 bf537_uart_rx

UART port
Select which UART port from which this block receives data.

Data length
Set the data length, in bytes, of the Out port. This block always
outputs the number of bytes the Data length parameter specifies.

Enable blocking mode
When you enable blocking mode, this block waits until it receives
enough data before writing the data to the Out port.

When you disable blocking mode:

• If the receive buffer contains the number of bytes specified by
Data length, the block writes the data to the Out port and
also sends a positive number on the Status port. This positive
number indicates valid data on the Out port.

• If the receive buffer does not contain the number of bytes
specified by Data length, the block does not write the data to
the Out port and instead sends a 0 to the Status port. This 0
indicates invalid data on the out port.

Enable software buffer
Use a software-managed buffer, in addition to hardware FIFO,
to handle incoming data.

Software buffer size factor
If you enable the software buffer, set the size of Software buffer
size factor to handle expected bursts in the incoming data.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_tx

3-10

Blackfin537 bf537_uart_tx

Purpose Transmit data stream from UART port

Library ADSP-BF537 EZ-KIT Lite

Description Configure UART transmission on ADI BF537 based board to send data
stream through the UART port of the board. The block requires an
input of [Nx1], where N indicates the data length, in an array of uint8
values representing the ASCII characters. Your model can only contain
one transmit block per UART port.

Dialog
Box

UART port
Select the UART port the transmit block uses to send data.

3-11

Blackfin537 bf537_uart_tx

Data length
Set the data length, in data words, of each transmission. Match
this value to the data size on the In port.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_rx

3-12

Byte Pack

Purpose Convert input signals to uint8 vector

Library Host Communication (hostcommlib)

Description Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using
the UDP protocol.

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block always has at least one input port and
only one output port.

3-13

Byte Pack

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of
the alignment value. The alignment algorithm ensures that each
element in the output vector begins on a byte boundary specified
by the alignment value. Byte alignment sets the boundaries
relative to the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
with no holes between any data types for any combination of data
types and signals.

Sometimes, you can have multiple data types of varying lengths. In such
cases, specifying a 2-byte alignment can produce 1–byte gaps between
uint8 or int8 values and another data type. In the pack implementation,
the block copies data to the output data buffer 1 byte at a time. You can
specify any of the data alignment options with any of the data types.

Example Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

3-14

Byte Pack

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and
single. With this information, the block automatically provides the
proper number of input ports.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:

{'uint32','uint32','uint16','double','uint8','double','single'}

When the signals are scalar values (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

See Also Byte Reversal, Byte Unpack

3-15

Byte Reversal

Purpose Reverse order of bytes in input word

Library Host Communication (hostcommlib)

Description Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments™
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

Dialog
Box

Number of inputs
Specify the number of input ports for the block. The number of
input ports adjusts automatically to match value so the number of
outputs equals the number of inputs.

3-16

Byte Reversal

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

See Also Byte Pack, Byte Unpack

3-17

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Library Host Communication (hostcommlib)

Description Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

Dialog
Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies the
dimension that the MATLAB® size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

3-18

Byte Unpack

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16','double','uint8','double','single'}.

3-19

Byte Unpack

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
demonstrate entering nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

3-20

CAN Pack

Purpose Pack individual signals into CAN message

Library CAN Communication

Description

The CAN Pack block loads signal data into a message at specified
intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of input
ports is dynamic and depends on the number of signals you specify
for the block. For example, if your block has four signals, it has four
input ports.

This block has one output port, CAN Msg. The CAN Pack block takes
the specified input parameters and packs the signals into a message.

Other Supported Features

The CAN Pack block supports:

3-21

CAN Pack

• The use of Simulink® Accelerator™ mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Real-Time Workshop® to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN Pack
block parameters.

3-22

CAN Pack

Parameters

Data is input as
Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this
option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
input port on your block.

• manually specified signals: Allows you to specify data signal
definitions. If you select this option, use the Signals table to
create your signals. The number of input ports on your block
depends on the number of signals you specify.

3-23

CAN Pack

• CANdb specified signals: Allows you to specify a CAN
database file that contains message and signal definitions. If
you select this option, select a CANdb file. The number of input
ports on your block depends on the number of signals specified
in the CANdb file for the selected message.

3-24

CAN Pack

CANdb file
This option is available if you specify that your data is input via
a CANdb file in the Data is input as list. Click Browse to find
the appropriate CANdb file on your system. The message list
specified in the CANdb file populates the Message section of the
dialog box. The CANdb file also populates the Signals table for
the selected message.

Message list
This option is available if you specify that your data is input via a
CANdb file in the Data is input as field and you select a CANdb
file in the CANdb file field. Select the message to display signal
details in the Signals table.

3-25

CAN Pack

Message

Name
Specify a name for your CAN message. The default is CAN
Msg. This option is available if you choose to input raw data or
manually specify signals. This option in unavailable if you choose
to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the
Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive
integer from 0 through 2047 for a standard identifier and from
0 through 536870911 for an extended identifier. You can also
specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually
specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your data input, the
CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

3-26

CAN Pack

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message data. The
start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

3-27

CAN Pack

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where byte order is in big-endian format (Motorola®). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

3-28

CAN Pack

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

• single

• double

3-29

CAN Pack

Multiplex type
Specify how the block packs the signals into the CAN message
at each timestep:

• Standard: The signal is always packed at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal is
always packed. You can specify only one Multiplexor signal
per message.

• Multiplexed: The signal is packed if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following types
and values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example

• The block packs Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block packs Signal-B along with Signal-A and Signal-D in that
timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block packs Signal-C along with Signal-A and Signal-D in that
timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack
either of the Multiplexed signals in that timestep.

3-30

CAN Pack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 3-31 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 3-31 to understand how physical
values are converted to raw values packed into a message.

Min
Specify the minimum physical value of the signal. The default
value is -inf (negative infinity). You can specify any number
for the minimum value. See “Conversion Formula” on page 3-31
to understand how physical values are converted to raw values
packed into a message.

Max
Specify the maximum physical value of the signal. The default
value is inf. You can specify any number for the maximum
value. See “Conversion Formula” on page 3-31 to understand
how physical values are converted to raw values packed into a
message.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

3-31

CAN Pack

where physical_value is the value of the signal after it is saturated
using the specified Min and Max values. raw_value is the packed
signal value.

See Also CAN Unpack

3-32

CAN Unpack

Purpose Unpack individual signals from CAN messages

Library CAN Communication

Description

The CAN Unpack block unpacks a CAN message into signal data using
the specified output parameters at every timestep. Data is output as
individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number
of output ports is dynamic and depends on the number of signals you
specify for the block to output. For example, if your block has four
signals, it has four output ports.

Other Supported Features

The CAN Unpack block supports:

3-33

CAN Unpack

• The use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

3-34

CAN Unpack

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN
message unpacking parameters.

Parameters

Data to be output as
Select your data signal:

• raw data: Output data as a uint8 vector array. If you select
this option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
output port on your block.

• manually specified signals: Allows you to specify data
signals. If you select this option, use the Signals table to
create your signals message manually.

3-35

CAN Unpack

The number of output ports on your block depends on the
number of signals you specify. For example, if you specify four
signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN
database file that contains data signals. If you select this
option, select a CANdb file.

3-36

CAN Unpack

The number of output ports on your block depends on the
number of signals specified in the CANdb file. For example, if
the selected message in the CANdb file has four signals, your
block has four output ports.

CANdb file
This option is available if you specify that your data is input via a
CANdb file in the Data to be output as list. Click Browse to
find the appropriate CANdb file on your system. The messages
and signal definitions specified in the CANdb file populate the

3-37

CAN Unpack

Message section of the dialog box. The signals specified in the
CANdb file populate Signals table.

Message list
This option is available if you specify that your data is to be
output as a CANdb file in the Data to be output as list and you
select a CANdb file in the CANdb file field. You can select the
message that you want to view. The Signals table then displays
the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg.
This option is available if you choose to output raw data or
manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw
data or manually specify signals. For CANdb-specified signals,
the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer
from 0 through 2047 for a standard identifier and from 0 through
536870911 for an extended identifier. If you specify 1, the
block unpacks all messages that match the length specified for
the message. You can also specify hexadecimal values using the
hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your output data, the
CANdb file defines the length of your message. If not, this field

3-38

CAN Unpack

defaults to 8. This option is available if you choose to output raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message. The start
bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

3-39

CAN Unpack

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where the byte order is in big-endian format (Motorola). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

3-40

CAN Unpack

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

• single

• double

3-41

CAN Unpack

Multiplex type
Specify how the block unpacks the signals from the CAN message
at each timestep:

• Standard: The signal is always unpacked at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal is
always unpacked. You can specify only one Multiplexor signal
per message.

• Multiplexed: The signal is unpacked if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, if a message has four signals with the following
values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example

• The block unpacks Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block unpacks Signal-B along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block unpacks Signal-C along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack
either of the Multiplexed signals in that timestep.

3-42

CAN Unpack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw
value to the physical value (signal value). See “Conversion
Formula” on page 3-44 to understand how unpacked raw values
are converted to physical values.

Offset
Specify the Offset value applied to convert the physical value
(signal value) to the unpacked raw value. See “Conversion
Formula” on page 3-44 to understand how unpacked raw values
are converted to physical values.

Min
Specify the minimum raw value of the signal. The default value
is -inf (negative infinity). You can specify any number for the
minimum value. See “Conversion Formula” on page 3-44 to
understand how unpacked raw values are converted to physical
values.

Max
Specify the maximum raw value of the signal. The default value
is inf. You can specify any number for the maximum value. See
“Conversion Formula” on page 3-44 to understand how unpacked
raw values are converted to physical values.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data
type of this port is uint32.

3-43

CAN Unpack

Output remote
Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of
this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option
adds a new output port to the block. The data type of this port
is double.

Output length
Select this option to output the length of the message in bytes.
This option adds a new output port to the block. The data type of
this port is uint8.

Output error
Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is
uint8.

Output status
Select this option to output the message received status. The
status is 1 if the block receives new message and 0 if it does not.
This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select any Output ports option, the number of output
ports on your block depends on the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value. physical_value is the
scaled signal value which is saturated using the specified Min and
Max values.

See Also CAN Pack

3-44

UDP Receive

Purpose Receive uint8 vector as UDP message

Library Host Communication (hostcommlib)

Description A UDP message comes into this block from the transport layer. The
block passes the message to the next downstream block. One block
output provides the data vector from the message. The second output is
a flag that indicates when a new UDP message is available.

Models can contain only one UDP Receive block.

This block issues a function call from the fcn port when a new UDP
packet becomes available. At the same time, it updates the signal going
out of the msgport with the contents of the UDP packet. It reads a single
UDP packet every sample hit. It does not attempt to receive multiple
UDP packets to fill the output vector.

If the UDP packet size is greater than the output port width parameter,
the system truncates the UDP messages at the Msg port. As a result,
the system discards the part of the UDP packet that does not fit into the
Msg port. The system cannot recover discarded message content.

In some cases, the UDP packet size is smaller than the Msg port width.
When this condition occurs, the portion of the output vector that does
not fit into the specified size processes as invalid data.

3-45

UDP Receive

Dialog
Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, instead of the
default value, 0.0.0.0, directs the block to accept messages from
the specified address only.

IP port to receive from
Specify the port the block accepts messages from on this machine.
The other end of the communication, usually a UDP Send block,
sends messages to this port. The value defaults to 25000, but
the values range from 1–65535.

3-46

UDP Receive

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this option to a value as large or
larger than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
messages. The default size is 8192 bytes. Make the buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
Enter a value that is greater than zero. Setting this option to a
large value reduces the likelyhood of dropped UDP messages. By
default, the sample time is 0.01 s.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

3-47

UDP Send

Purpose Send UDP message

Library Host Communication (hostcommlib)

Description The UDP send block receives a uint8 vector that it sends as a UDP
message to the host. Input must be in the form of a uint8 vector with
UDP format.

Models can contain only one UDP Send block.

Dialog
Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
To broadcast the UDP message, retain the default value,
255.255.255.255.

3-48

UDP Send

IP port to send to
Specify the port to which the block sends the message. Port
numbers range from 1 to 65535. Configure the network port
receiving the UPD messages with the same port number.

Use the following local IP port
Specify the local IP port the block sends the message from.
Entering -1 (the default value) for this option allows the network
to select automatically the local IP port to use to send the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address. If you enter a port
number in the UDP Receive block option IP port to receive
from, enter that port identifier instead of the port address.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

See Also Byte PackByte Reversal, Byte Unpack, UDP Receive

3-49

UDP Send

3-50

Index

IndexB
Blackfin537 bf537_adc 3-2
Blackfin537 bf537_dac 3-4
Blackfin537 bf537_uart_config 3-6
Blackfin537 bf537_uart_rx 3-9
Blackfin537 bf537_uart_tx 3-11
blocks

CAN Pack 3-21
CAN Unpack 3-33

Byte Pack block 3-13
Byte Reversal block 3-16

Byte Unpack block 3-18

C
CAN Pack block 3-21
CAN Unpack block 3-33

U
UDP Receive block 3-45
UDP Send block 3-48

Index-1

	toc
	System Requirements
	Block Reference
	ADSP-BF537 EZ-KIT Lite (bf537ezkitlite)
	CAN Message Handling Blocks (canmsglib)
	Host Communication (hostcommlib)

	Blocks — Alphabetical List
	Data is input as

	Index

